×

AIで不良品を検出?Pythonで製造業向け画像検査システムを作ってみた

近年、製造業の現場ではAI技術の導入が急速に進んでおり、なかでも「Pythonによる画像認識」は、不良品の自動検出や検査工程の省力化を実現する手段として注目を集めています。従来の目視検査は人手や経験に依存する部分が多く、検査ミスや属人化といった課題がありましたが、AIを活用すれば、より安定した品質管理と作業効率の向上が可能になります。本記事では、「Python 画像 認識」をキーワードに、実際に製造業向けの画像検査システムを構築した事例を交えながら、使用した技術や開発の流れ、実運用に向けたポイントについて詳しく解説していきます。

 2025年07月16日

近年、製造業の現場ではAI技術の導入が急速に進んでおり、なかでも「Pythonによる画像認識」は、不良品の自動検出や検査工程の省力化を実現する手段として注目を集めています。従来の目視検査は人手や経験に依存する部分が多く、検査ミスや属人化といった課題がありましたが、AIを活用すれば、より安定した品質管理と作業効率の向上が可能になります。本記事では、「Python 画像 認識」をキーワードに、実際に製造業向けの画像検査システムを構築した事例を交えながら、使用した技術や開発の流れ、実運用に向けたポイントについて詳しく解説していきます。

1. Pythonによる画像認識とは?基本の仕組み

画像認識とは、カメラやセンサーで取得した画像から、対象物の有無・形状・状態を自動的に判断する技術です。Pythonでは、OpenCVやTensorFlow、PyTorchなどの強力なライブラリを使うことで、比較的簡単に画像認識モデルを構築することができます。

特に近年はディープラーニングの発展により、目視では見逃してしまうような微細な欠陥も検出できるようになり、製造業や品質管理の現場で大きな注目を集めています。

 

2. 製造業における画像検査の重要性

工場の製造ラインでは、製品に傷・欠け・変色などの「不良」が混入することがあります。従来は人の目でチェックする「目視検査」が主流でしたが、次のような課題がありました。

 

・検査の精度が作業者に依存

・作業者の疲労による見落とし

・検査スピードの限界

・検査記録の不完全性

 

このような課題をAI画像認識によって解決することで、検査精度の均一化・自動化・省人化が実現できます。また、品質トレースやエラー分析にも活用できる点が大きなメリットです。

 

3. 使用技術の紹介(OpenCV, TensorFlow, YOLOなど)

Pythonで画像検査システムを構築する際に活用される代表的な技術を紹介します。

 

OpenCV

・画像処理ライブラリの定番

・輪郭検出、エッジ検出、色抽出などの前処理が可能

TensorFlow / Keras

・Google製の機械学習ライブラリ

・CNN(畳み込みニューラルネットワーク)を使った画像分類が簡単

YOLO

・高速かつ高精度な物体検出モデル

・製品のどの部位に異常があるかをリアルタイムで判断可能

その他

・PyTorch:柔軟な研究開発向け

・LabelImg:アノテーションツール

・ONNX:エッジデバイスへのモデル最適化

 

4. Pythonで簡易的な不良品検出モデルを構築してみた

今回は、簡易的な実験として以下のステップで不良品検出のプロトタイプを構築しました。

構成手順(概要)

画像収集:正常品・不良品の画像を合計500枚用意

アノテーション:LabelImgで不良箇所にラベルを付ける

データ前処理:画像サイズの統一、Augmentation実施

モデル構築:Kerasを使ってCNNを設計(2クラス分類)

学習&評価:精度92%以上を達成

リアルタイム検出:OpenCVでWebカメラと連携し、検査ラインを模擬



このように、Pythonとオープンソースのツールだけで、実用レベルに近い画像検査システムを構築することが可能です。

 

5. 実運用に向けた課題と拡張のポイント

実際に製造現場でAI画像検査を導入するには、次のような課題と対応が必要です。

 

主な課題と対策

今後はクラウド連携やリアルタイム分析、PLCとの接続による生産ラインとの統合がカギとなります。

 

PythonとAIを使った画像認識技術は、製造業における品質管理を次のレベルに進化させる大きな可能性を持っています。実際に不良品検出のモデルを自作してみると、その柔軟性やスピード、再現性の高さに驚くはずです。現在、目視検査や手作業に頼っている企業は、まずは小規模なPoC(概念実証)から導入し、徐々に自動化範囲を拡張するのが現実的な第一歩です。AI画像検査は「コスト削減」と「品質向上」を両立できる現場改善ツールとして、今後ますます重要な位置を占めるでしょう。

いずれかのサービスについてアドバイスが必要な場合は、お問い合わせください。
  • オフショア開発
  • エンジニア人材派遣
  • ラボ開発
  • ソフトウェアテスト
※以下通り弊社の連絡先
電話番号: (+84)2462 900 388
メール: contact@hachinet.com
お電話でのご相談/お申し込み等、お気軽にご連絡くださいませ。
無料見積もりはこちらから

Tags

ご質問がある場合、またはハチネットに協力する場合
こちらに情報を残してください。折り返しご連絡いたします。

 Message is sending ...

関連記事

 2025年07月16日

【リアルタイム画像認識入門】PythonとYOLOv8で物体検出をはじめよう!

AIやディープラーニング技術の進化により、「画像認識」はもはや研究室だけのものではなく、誰でも手軽に扱える技術となりました。中でも、物体検出アルゴリズム「YOLO」は、高速かつ高精度なリアルタイム処理が可能で、実用性の高さから注目を集めています。本記事では、Pythonを使ってYOLOv8を実装し、リアルタイムで物体を検出する方法を、初心者にも分かりやすく解説します。

 2025年07月15日

Pythonを使った画像認識の始め方|初心者でもできるステップ

近年、AI技術の急速な進歩により、画像認識は医療、製造、自動運転など幅広い分野で重要な役割を担っています。中でもPythonは、豊富なライブラリと扱いやすさから、初心者でも手軽に画像認識の開発に挑戦できる言語として注目されています。本記事では、Pythonを使った画像認識の基本的な手順から初心者におすすめの学習方法まで、専門知識を持つ筆者が分かりやすく解説します。これから画像認識を学びたい方やAI技術に興味のある方の入門ガイドとして役立つ内容です。

 2025年07月15日

Pythonを使った画像認識とは?仕組み・活用例・おすすめライブラリを徹底解説【OpenCVも紹介】

近年、AI技術の進化により、「画像認識」は様々な業界で注目される技術となりました。なかでも、Pythonはそのシンプルな構文と豊富なライブラリ群により、画像認識の開発現場で最も選ばれているプログラミング言語の一つです。製造現場での外観検査、小売業での棚在庫管理、医療分野での画像診断など、用途は年々拡大しています。本記事では、Pythonを使った画像認識の基本的な仕組みから、実際にできること、業務活用の視点、さらにはOpenCVを活用した開発手法まで、専門的な内容をやさしく解説します。画像認識に興味のあるエンジニア、業務へのAI活用を検討している方、そしてDXを推進したい企業担当者にとっても、実践的なヒントが得られる内容となっています。

 2025年07月11日

【2025年最新版】AIで進化するウォーターフォール開発|エラー削減・効率化を実現するスマート統合とは?

ウォーターフォール開発は、要件の安定性や厳格な管理体制が求められるシステム開発において、今なお多くの企業で活用されています。しかし、変化の激しい現代においては、その柔軟性の低さや開発スピードの遅さが課題視されがちです。そこで注目されているのが、AI(人工知能)との統合です。本記事では、AIを活用してウォーターフォール開発をどのように効率化・高度化できるのか、具体的な活用方法や導入事例、最新のスマートツールまで、10年以上IT領域で執筆を続ける筆者が徹底的に解説します。

 2025年07月09日

ウォーターフォール×アジャイルの融合:2025年型ハイブリッド開発とは?

長らく「古い開発モデル」として見られてきたウォーターフォールモデル。しかし、現実の現場では未だに多くの企業がこのモデルを採用し続けています。特に大規模プロジェクトや、金融・医療・公共系のシステム開発では、その構造化された進行と明確なドキュメント管理が重視されています。一方、アジャイル開発は「スピードと柔軟性」を重視する現代的な手法として広がりを見せましたが、管理や品質面での課題が浮き彫りになる場面もあります。そのような背景から、今業界で注目されているのが「ハイブリッド開発」。

 2025年07月08日

ウォーターフォールとアジャイルの違いとは?徹底比較&実践ガイド

近年、システム開発の現場ではアジャイル開発が注目される一方で、ウォーターフォール開発も根強い支持を受けています。どちらの手法にもメリット・デメリットがあり、プロジェクトに応じた選択が重要です。本記事では、両者の違いを7つの観点から徹底比較し、さらに使い分けのポイントやハイブリッド開発の可能性についても解説します。

 2025年07月08日

ウォーターフォール開発とは?流れ・メリット・デメリットやさしく解説!

システム開発やWebアプリ制作の話をするとき、「ウォーターフォール開発」という言葉を聞いたことがある方も多いのではないでしょうか?特に企業での大規模プロジェクトや、SIerなどの受託開発でよく採用される伝統的な手法の一つです。この記事では、ウォーターフォール開発の特徴から流れ、メリット・デメリット、そして他の開発モデルとの違いまで、初心者の方でもわかりやすく丁寧に解説します。

 2025年07月04日

【2025年最新版】Python Web アプリに使われる代表的なフレームワーク・ライブラリを徹底解説

Pythonはデータ分析、機械学習、スクリプト開発だけでなく、Webアプリケーションの開発でも非常に優秀な選択肢です。文法が簡潔で初心者にも学びやすく、コミュニティも活発で、豊富なライブラリやツールが用意されています。 PythonでWebアプリを開発する最大の魅力は、目的やスケールに応じたフレームワークを柔軟に選べる点にあります。小規模なプロトタイプから、大規模な商用サービスまで、幅広く対応可能です。

 2025年07月04日

【保存版】Python Web アプリのセキュリティ対策:XSS・CSRF・SQLインジェクションを徹底解説

現代のWeb開発では、アプリケーションの機能性やユーザー体験だけでなく、「セキュリティ」の確保が非常に重要です。特にPython Web アプリ(FlaskやDjangoを利用したWebアプリ)は、その手軽さと柔軟性から多くの開発者に利用されていますが、脆弱性を放置すると重大な被害を招くリスクがあります。 本記事では、Python Web アプリ開発において特に注意すべき代表的な脆弱性(XSS、CSRF、SQLインジェクション)と、その具体的な対策方法を詳しく解説します。

 2025年07月03日

Flask vs Django|PythonでWebアプリ開発するならどっち?徹底比較

PythonでWebアプリを開発しようと考えたとき、多くの人が最初に迷うのが「FlaskとDjangoのどちらを使うべきか?」という問題です。どちらもPython製の有名なWebフレームワークであり、豊富な機能と実績を持っています。しかし、両者の性質や設計思想は大きく異なるため、プロジェクトの目的や学習段階によって最適な選択肢が変わってきます。 この記事では、FlaskとDjangoの基本的な特徴から、実際の開発現場での使われ方、そして初心者・副業・キャリアアップの観点から、どちらを選ぶべきかを徹底比較していきます。

 2025年07月03日

Pythonで始めるWebアプリケーション開発入門

近年、Webアプリケーションの需要がますます高まり、企業から個人まで多くの人がその開発に取り組むようになっています。その中でも、Pythonはシンプルな文法と豊富なライブラリを活かして、初心者からプロフェッショナルまで幅広く支持されている人気のプログラミング言語です。この記事では、「PythonでWebアプリケーションを開発したい」と考えている方に向けて、基礎知識から代表的な活用例、メリット・デメリット、開発手順、必要なスキル、そして学習方法までを網羅的に解説します。Pythonを使ったWebアプリ開発の全体像をつかみ、あなたの開発の第一歩をサポートします。

 2025年07月02日

C言語とC++とC#の違いとは?それぞれの特徴と活用分野を徹底比較!

プログラミングの世界に足を踏み入れるとき、まず出会うのは「C言語」や「C++」などの言語です。これらは現在でも多くのエンジニアに使用されており、特にシステム開発や組込みプログラミングで重要な役割を果たしています。C言語はそのシンプルさと効率性から、初心者でも学びやすい言語の一つとされていますが、C++やC#といった後続の言語と比較すると、どのような違いがあるのでしょうか?本記事では、C言語とその後継であるC++、C#を徹底的に比較し、それぞれの特徴や活用分野について解説します。初心者の方も、これから学ぶべき言語を選ぶ参考になること間違いなしです。

 2025年07月01日

【初心者向け】C言語は難しい?それでも学ぶ価値と習得のコツを徹底解説!

「C言語ってもう古いんじゃないの?」「難しそうで自分には無理かも…」 そう感じたことはありませんか?確かにC言語は1970年代に誕生した歴史のあるプログラミング言語で、文法も厳しく、初心者にはとっつきにくい面があります。しかし、そんなC言語は今もOSや家電、自動車、医療機器などの“中身”を動かす技術の基盤として使われているのです。この記事では、「C言語って何?」「なぜ今でも学ぶ価値があるの?」という疑問に答えながら、C言語の特徴・難しさ・メリット・学習方法までを初心者向けにわかりやすく解説します。

 2025年07月01日

C言語とは?特徴・メリット・他言語との違いを徹底解説!

近年、PythonやJavaScriptといったモダンなプログラミング言語が注目を集める中で、「C言語」という名前を聞くと、少し古い印象を持つ人もいるかもしれません。しかし実は、C言語は今もなお多くの現場で使用されており、ソフトウェア開発の基礎を学ぶ上で非常に重要な言語として高く評価されています。この記事では、C言語の基本からメリット・デメリット、他の言語との違い、そして学習方法までをわかりやすく解説します。「C言語ってなに?」という初心者の方から、「もう一度学び直したい」という経験者の方まで、すべての読者に役立つ内容をお届けします。